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Abstract
We present an explicit construction of coherent states for an arbitrary irreducible
representation of the unitary symplectic group USp(4). Three different
families of coherent states are obtained, corresponding to the subgroups
U(1) × U(1), U(2) and SU(2) × SU(2). The symplectic structure on the
manifold of coherent states is obtained, and canonical coordinates are used to
express the classical limit of quantum observables. One of the families is seen
to provide a trivial classical limit.

PACS number: 02.20.Uw

1. Introduction

Coherent states were first defined for the harmonic oscillator as quantum states presenting a
classical-like behaviour, and later recognized to express coherence properties of the quantized
radiation field [1]. These canonical coherent states are now realizable in the laboratory and
largely used in quantum optics experiments. Their angular momentum analogues appeared in
the early 1970s, in connection with applications to atomic physics [2], and soon a generalization
to arbitrary Lie groups was presented [3].

Coherent states have proved to be a useful tool in providing not only a classical limit (i.e.,
real functions associated with observables and a Poisson bracket to replace the commutator) to
quantum systems [4] but also a way to incorporate quantum corrections [5]. The investigation
of coherent states for unitary groups U(N) have attracted most of the attention [6], not only
because of their long history of applications to quantum physics [7], but also because their
irreducible representations are easy to manipulate [8]. Coherent states of SU(3), for example,
have been examined in detail [9–11].

In this paper we construct coherent states for the unitary symplectic group USp(4).
Symplectic groups are the natural symmetry groups of both classical and quantum mechanics,
since they contain all linear transformations that preserve the canonical relations between
conjugate variables. Apart from this classical theory, the symplectic groups have found
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applications in fields as far apart as spectroscopy [12], quantum optics [13] and the study of
the genetic code [14]. Representation theory of the symplectic groups has been exaustively
studied both in the compact and non-compact forms [15, 16], but matrix elements for general
irreducible representations of Sp(2N, C) for N > 2 are hard to manipulate. In the present
case we use the Gelfand–Zetlin formalism and explicit formulas for arbitrary representations.

This work is aimed at giving USp(4) a detailed treatment. We introduce coordinates in
the quotient spaces associated with the subgroups U(1) × U(1), U(2) and SU(2) × SU(2),
which are used to parametrize the coherent states. Different coordinates are used in each case,
and for symmetric representations we derive canonical coordinates, in which the symplectic
2-form on the appropriate quotient space reduces to Darboux’s form.

This paper is organized as follows. In section 2 we review the properties of the symplectic
group and of its subgroups. In section 3 we present the irreducible representations. Section 4
is devoted to the coherent states of general representations, while in section 5 we restrict to
the symmetric ones. In section 6 we review the theory of coadjoint orbits and present the
special case of USp(4)/[SU(2) × SU(2)], where the coherent states provide only the trivial
representation of the group. Conclusions are presented in section 7.

2. The unitary symplectic group USp(4) and its algebra

The symplectic groups are the natural symmetry groups of both classical and quantum
mechanics. Classical mechanics takes place in a real manifold endowed with a closed,
non-degenerate and antisymmetric two-form (a symplectic form), and the equations of motion
are given by Poisson brackets (i, j = 1, . . . , N)

{qi, pj } = δij . (1)

Quantum mechanics takes place in a complex Hilbert space, and the dynamics is determined
by the canonical commutation relations (i, j = 1, . . . , N)

[q̂i , p̂j ] = ih̄δij . (2)

These relations can also be written in the form (now i, j = 1, . . . , 2N )

{ξi, ξj } = Jij (3a)

[ξ̂i , ξ̂j ] = ih̄Jij (3b)

where ξ = (q1, . . . , qN , p1, . . . , pN)T and J is the 2N × 2N matrix given by

J =
(

0 1
−1 0

)
. (4)

The symplectic group Sp(2N, C) (in its defining representation) is composed of all linear
complex transformations that preserve the structure of relations (3). It is easy to see therefore
that

Sp(2N, C) = {g|gJgT = J }. (5)

An equivalent definition of the symplectic group is the set of linear complex transformations
that preserve the bilinear form (ξ, η) = ξT Jη, where ξ, η are vectors in C

2N . This complex
group has two important real forms: the normal (non-compact) real form Sp(2N, R), which
is the one naturally associated with classical mechanics, and the unitary (compact) real form
USp(2N), which is obtained as an intersection with the unitary group

USp(2N) = Sp(2N, C) ∩ U(2N). (6)
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The Lie algebra sp(2N, C) is the set of complex matrices X satisfying XT J + JX = 0.
These matrices have the general block form

X =
(

A B

C −AT

)
(7)

where A,B and C are complex N ×N matrices, B and C being symmetric. The real symplectic
group and its algebra sp(2N, R) are obtained restricting these matrices to the real field. On the
other hand, the unitary symplectic group and its algebra usp(2N) are obtained by imposing X
to be anti-Hermitian, X† = −X, or equivalently

A† = −A B† + C = 0 = C† + B. (8)

The ten-dimensional symplectic algebra usp(4) has, in the Cartan–Weyl scheme, the
following commutation relations:

[Hi,Hj ] = 0 i, j = 1, 2 (9)[
Hi,E

±
j

] = ±(αj )iE
±
j i = 1, 2 j = 1, . . . , 4 (10)[

E+
i , E−

i

] = (αi)1H1 + (αi)2H2 (11)[
E+

1 , E+
2

] =
√

2E+
3

[
E+

1 , E+
3

] =
√

2E+
4 (12)

where H1 and H2 span the abelian Cartan subalgebra and E−
i = (

E+
i

)†
(the Killing form is

negative definite on usp(2N), as usual). The positive roots are

α1 = [1,−1] α2 = [0, 2] α3 = [1, 1] α4 = [2, 0]. (13)

Note the existence of two su(2) algebras generated by
{
H1, E

+
4 , E−

4

}
and

{
H2, E

+
2 , E−

2

}
.

The direct sum of these algebras is a maximal subalgebra of usp(4) that is associated with the
canonical symmetry breaking chain

usp(4) ⊃ su(2) ⊕ su(2) ⊃ u(1) ⊕ u(1). (14)

This chain can be used to provide a complete set of quantum numbers that label uniquely the
vectors in any ireducible representation of usp(4) [17]. Matrix elements for the algebra
elements in an arbitrary irrep were obtained in [18] using these quantum numbers and
implemented for algebraic computation through the package Killing [19]. We present the
main results in the next section.

A general element g of Sp(4, C) is obtained as an exponential of the kind

g = exp

{
γ1H1 + γ2H2 +

4∑
i=1

ηiE
+
i + ρiE

−
i

}
(15)

where all Greek letters represent arbitrary complex numbers. As already noted, this
noncompact complex group has two real forms of (real) dimension 10: a noncompact one,
denoted Sp(4, R), obtained by restricting all the previous parameters to the real field; a compact
one, denoted USp(4), which consists of unitary matrices obtained by imposing ρi = −η∗

i and
γ1, γ2 ∈ R. In this paper we will always consider this compact case.

In what follows we will use the Gauss decomposition of USp(4) and its quotient spaces.
To perform that decomposition one must find functions (τ, τ̃ , α), depending only on the group
coordinates, such that the group elements can be decomposed as

g = exp

{
4∑

i=1

τiE
+
i

}
exp{α1H1 + α2H2} exp

{
4∑

i=1

τ̃iE
−
i

}
. (16)
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Moreover, the exponential involving only positive (or negative) roots can also be disentangled.
It is known that if A,B are elements of a Lie algebra, then

eA+B = eA eB eC1 eC2 . . . (17)

where all Ci belong to the Lie algebra. Relations of this kind are usually called Baker–
Campbell–Hausdorff formulas. A recurrence procedure to find the Ci functions in terms of
commutators can be found in [20]. The sequence of exponentials is finite if the algebra is
nilpotent, which is the case for the positive (negative) roots. We shall need only the first two
elements:

C1 = − 1
2 [A,B] C2 = − 1

3 [[A,B], B] − 1
6 [[A,B], A]. (18)

Therefore, a general group element can be written in terms of new coordinates (z, z̃, β) as

g =
{

4∏
i=1

exp ziE
+
i

}
exp{β1H1 + β2H2}

{
4∏

i=1

exp z̃iE
−
i

}
. (19)

3. Irreducible representations of usp(4)

Irreducible representations of usp(4) are labelled by two integers, λ1 and λ2, with λ1 > λ2. The
basis vectors analogous to the Gelfand–Tsetlin basis for U(N) are given by |σ1, σ2, h1, h2〉,
where σi are positive integers obeying the inequalities [17]

λ1 − λ2 � σ1 + σ2 � λ1 + λ2 (20)

λ2 − λ1 � σ1 − σ2 � λ1 − λ2 (21)

and hi = −σi,−σi + 2, . . . , σi − 2, σi . The quantum numbers (σ1, σ2) are the highest
weights of the su(2) ⊕ su(2) irreducible representations.

By construction, the diagonal operators have simple matrix elements,

Hi |σ1, σ2, h1, h2〉 = hi |σ1, σ2, h1, h2〉 (22)

Ji |σ1, σ2, h1, h2〉 = σi(σi + 2)|σ1, σ2, h1, h2〉 (23)

where the Casimir operators of the sp(2) subalgebras are

J1 = H 2
1 +

[
E+

4 , E−
4

]
+ J2 = H 2

2 +
[
E+

2 , E−
2

]
+ (24)

and [A,B]+ = AB + BA.
The action of the ladder operators

{
E±

2 , E±
4

}
are similar to those of the angular momentum

algebra and are given by

E±
2 |σ1, σ2, h1, h2〉 = |σ1, σ2, h1, h2 ± 2〉 (25)

E±
4 |σ1, σ2, h1, h2〉 = |σ1, σ2, h1 ± 2, h2〉 (26)

Note that these operators do not couple different representations of the sp(2) subalgebras.
That is not the case with the remaining elements,

{
E±

1 , E±
3

}
, which may couple the first

neighbourhood (σi ± 1) representations. Their actions are given by

E±
1 |σ1, σ2, h1, h2〉 = A±|σ1 + 1, σ2 + 1, h1 ± 1, h2 ∓ 1〉

±B±|σ1 + 1, σ2 − 1, h1 ± 1, h2 ∓ 1〉
∓C±|σ1 − 1, σ2 + 1, h1 ± 1, h2 ∓ 1〉
+ D±|σ1 − 1, σ2 − 1, h1 ± 1, h2 ∓ 1〉 (27)
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and

E±
3 |σ1, σ2, h1, h2〉 = A′±|σ1 + 1, σ2 + 1, h1 ± 1, h2 ± 1〉

±B ′±|σ1 + 1, σ2 − 1, h1 ± 1, h2 ± 1〉
∓C ′±|σ1 − 1, σ2 + 1, h1 ± 1, h2 ± 1〉
+ D′±|σ1 − 1, σ2 − 1, h1 ± 1, h2 ± 1〉 (28)

where the primed coefficients are obtained from the unprimed ones just by exchanging the
sign of h2,

X′± = X±(h2 → −h2) X ∈ {A,B,C,D}. (29)

The coefficients A+ and B+ can be shown to be [18]

A+ =
{

(λ+ − σ+)(λ+ + σ+ + 6)(σ+ − λ− + 2)(σ+ + λ− + 4)(σ1 + h1 + 2)(σ2 − h2 + 2)

64(σ1 + 1)(σ1 + 2)(σ2 + 1)(σ2 + 2)

} 1
2

(30)

B+ =
{

(λ− + σ− + 2)(λ− − σ−)(λ+ − σ− + 2)(λ+ + σ− + 4)(σ1 + h1 + 2)(σ2 + h2)

64(σ1 + 1)(σ1 + 2)σ2(σ2 + 1)

} 1
2

(31)

where λ± = λ1 ±λ2 and σ± = σ1 ±σ2. The C+ and D+ coefficients are related to the previous
ones by simple changes in the arguments,

C+(σ1, σ2, h1, h2) = B+(σ1 − 1, σ2 − 1,−(h1 + 1),−(h2 − 1)) (32)

D+(σ1, σ2, h1, h2) = A+(σ1 − 1, σ2 + 1,−(h1 + 1),−(h2 − 1)). (33)

Moreover, the lowering coefficients can be obtained from the raising ones as follows:

A−(σ1, σ2, h1, h2) = D+(σ1 + 1, σ2 + 1, h1 − 1, h2 + 1) (34)

B−(σ1, σ2, h1, h2) = C+(σ1 + 1, σ2 − 1, h1 − 1, h2 + 1) (35)

C−(σ1, σ2, h1, h2) = B+(σ1 − 1, σ2 + 1, h1 − 1, h2 + 1) (36)

D−(σ1, σ2, h1, h2) = A+(σ1 − 1, σ2 − 1, h1 − 1, h2 + 1). (37)

4. Coherent states

4.1. Definition

Given an irreducible representation [λ1, λ2], we define coherent states |z〉 with respect to the
lowest weight |0〉 = |λ1, λ2,−λ1,−λ2〉 by

|z〉 = exp
{
z1E

+
1

}
exp

{
z2E

+
2

}
exp

{
z3E

+
3

}
exp

{
1√
2
(z4 − z1z3)E

+
4

}|0〉 (38)

The four complex numbers zi are coordinates for the manifold of coherent states, and we made
an appropriate choice for z4 for later convenience.

It is easy to see that in the symmetric representations, where λ1 = λ and λ2 = 0, any
element of the kind exp

{
z2E

+
2

}
leaves the lowest weight invariant

exp
{
z2E

+
2

}|λ, 0,−λ, 0〉 = |λ, 0,−λ, 0〉. (39)
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This vector has therefore U(2) as its isotropy group, while in the non-symmetric case the
isotropy of the lowest weight is given just by the U(1) × U(1) group generated by the Cartan
subalgebra (we come back to this subject in section 5). To avoid this isotropy we impose the
restriction z2 = 0 on (38) when dealing with symmetric representations, analysed in full detail
in section 4.

Coherent states related to the quotient space USp(4)/[SU(2) × SU(2)] can only be
contructed in antisymmetric representations, using a non-minimal weight as reference vector.
In that case the decomposition formula (19) is no longer useful, and we have to return to
equation (15). Section 6.1 is devoted to this discussion.

4.2. General properties, resolution of unity

Coherent states provide an overcomplete family of states inside a given [λ1, λ2] irreducible
representation, of dimension Dλ1,λ2 = (λ1 +2)(λ2 +1)(λ1 −λ2 +1)(λ1 +λ2 +3)/6. A resolution
of unity ∫

dµ(z)|z〉〈z| =
∑

|σ1, σ2, h1, h2〉〈σ1, σ2, h1, h2| = 1 (40)

(where the sum includes all basis vectors) exists with dµ(z) an appropriate measure obtained
from the Haar measure of the group expressed in the z coordinates of (38). The determination
of the measure is in general a difficult problem, but we shall present it explicitly for symmetric
representations in the next section.

On the other hand, let the coherent states be written in terms of the basis states of the
representation as

|z〉 =
∑

Fn(z)|σ1, σ2, h1, h2〉 (41)

where the sum again includes all basis states and n represents the quantum numbers. The
functions Fn(z) are a family of polynomials spanning a Hilbert space of dimension Dλ1,λ2 ,
analogous to the usual Bargmann representation. The scalar product in this space is derived
from the resolution of unity (40):∫

dµ(z)F∗
n (z)Fn′(z) = δnn′ . (42)

Another interesting property of this Hilbert space is the existence of a reproducing kernel
K(z, z′) such that∫

dµ(z)Fn(z)K(z, z′) = Fn(z
′). (43)

This kernel is just the overlap of two coherent states

K(z, z′) = 〈z|z′〉 (44)

and its determination from the definition (38) is also in general a nontrivial task. We present
it only for the symmetric representations.

4.3. Action of algebra elements on coherent states

The action of a usp(4) element on a coherent state does not, in general, yield another coherent
state. From the commutation relations and the definition (38), we can find a differential
representation for the algebra elements. It is not difficult to see that the raising operators and
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the diagonal ones are represented by

E+
1 |z〉 = [∂1 + z3∂4]|z〉 (45)

E+
2 |z〉 = [∂2 −

√
2z1∂3]|z〉 (46)

E+
3 |z〉 = [∂3 − z1∂4]|z〉 (47)

E+
4 |z〉 =

√
2∂4|z〉 (48)

H1|z〉 = [z1∂1 + z3∂3 + 2z4∂4 − λ1]|z〉 (49)

H2|z〉 = [−z1∂1 + 2z2∂2 + z3∂3 − λ2]|z〉 (50)

where ∂i indicates a derivative with respect to zi . The lowering operators are a bit more
complicated,

E−
1 |z〉 = [−z2

1∂1 +
√

2(z3 +
√

2z1z2)∂2 + (z4 − z1z3)∂3 − z1z4∂4 + z1(λ1 − λ2)
]|z〉 (51)

E−
2 |z〉 = [−√

2z3∂1 − 2z2
2∂2 + 2z2λ2

]|z〉 (52)

E−
3 |z〉 = [−(z4 + z1z3)∂1 − 2z2(z3 +

√
2z1z2)∂2 − z2

3∂3

− z3z4∂4 + (z3 + 2
√

2z1z2)λ2 + z3λ1
]|z〉 (53)

E−
4√
2
|z〉 =

[
−z1z4∂1 − 1√

2
(z3 +

√
2z1z2)

2∂2 − z3z4∂3 − z2
4∂4 + z4λ1 + z1(z3 + z1z2)λ2

]
|z〉.

(54)

Since in the symmetric representation the coherent states do not depend on z2, the
derivatives with respect to this variable vanish in that case. The hermitian adjoint properties
of these operators must be analysed in relation to the scalar product (42).

4.4. Normalization

The states defined above are not normalized. In order to obtain their norm, we need to
determine the variables α and F in the following equation:

〈z|z〉 = 〈0|D(z1, z2, z3, (z4 − z1z3)/
√

2)D†(z1, z2, z3, (z4 − z1z3)/
√

2)|0〉 (55)

= 〈0|D†(α1, α2, α3, α4) exp{F1H1 + F2H2}D(α1, α2, α3, α4)|0〉 (56)

where

D†(z1, z2, z3, z4) = exp
{
z1E

+
1

}
exp

{
z2E

+
2

}
exp

{
z3E

+
3

}
exp

{
z4E

+
4

}
. (57)

Note that the order of the raising and lowering operators was reversed. The action upon the
lowest weight then becomes trivial and the diagonal term provides the required normalization.
The calculation can be done explicitly in the fundamental representation. The final result is

α1 = f −1(z1 − z∗
3z4) −

√
2z∗

2α3 (58)

α2 = 1√
2
(g − f |α1|2)−1[

√
2z2 + z∗

1(z3 +
√

2z1z2) + f α1α
∗
3 ] (59)

α3 = f −1(z3 + z∗
1z4) (60)
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α4 =
√

2f −1z4 −
√

2α1α3 (61)

F1 = − ln f F2 = −ln(g − f |α1|2) (62)

where f and g are real numbers given by

f = 1 + |z1|2 + |z3|2 + |z4|2 (63)

g = 1 + 2|z2|2 + |z3 +
√

2z1z2|2 (64)

The norm is then found to be

〈z|z〉 = f λ1(g − f |α1|2)λ2 . (65)

It is always possible to define, on the manifold of coherent states, a symplectic 2-form
[21]

ω = ih̄
4∑

i,j=1

ωij dzi ∧ dz∗
j (66)

and the associated Poisson bracket

{f, g} = 1

ih̄

∑
i,j

ωij

{
∂f

∂zi

∂g

∂z∗
j

− ∂f

∂z∗
j

∂g

∂zi

}
(67)

where ωikωkj = δi
j and the elements ωij are given in terms of the norm [9, 22]

ωij = ∂2 ln〈z|z〉
∂zi∂z∗

j

. (68)

Given X and Y two elements of usp(4), the Poisson bracket of their mean values is related to
their commutator by

h̄{〈z‖X‖z〉, 〈z‖Y‖z〉} = i〈z‖[X, Y ]‖z〉 (69)

(where ‖z〉 denotes the normalized coherent states) and can be used to obtain a well-defined
classical limit for a quantum system whose observables can be written in terms of usp(4)

elements.

4.5. Classical Limit

We now want to obtain the classical limit of a Hamiltonian defined on a irreducible
representation of Sp(4). This limit corresponds to letting h̄ → 0 and simultaneously increasing
the size of the representation so that the density of states may increase. Since the representation
is labelled by two integer numbers [λ1, λ2], the actual classical limit can be attained in many
different ways [9, 23]. One can for example consider only symmetric representations, by
letting λ1 go to infinity while keeping λ2 = 0. Or one can let both λ1 and λ2 go to infinity
and keep their ratio λ1/λ2 constant. In any case the limit can be implemented by imposing the
Planck constant h̄ to be proportional to (λ1 + λ2)

−1.
If we take the expectation value with respect to normalized coherent states ‖z〉 of the

Heisenberg equation of motion

〈z‖dX

dt
‖z〉 = i

h̄
〈z‖[H,X]‖z〉 (70)
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where H is the Hamiltonian and X is an usp(4) element, and multiply both sides by h̄, its
classical limit is well-defined and easily seen to be

dX
dt

= {H,X } (71)

where H and X are the classical limits of the corresponding operators, defined as

H = lim
h̄→0

〈z‖H‖z〉. (72)

Moreover, expectation values of products of operators factorize [5, 9]

〈z‖h̄X1h̄X2‖z〉 → 〈z‖h̄X1‖z〉〈z‖h̄X2‖z〉 for h̄ → 0 (73)

and therefore the connection between commutators and Poisson brackets is not restricted to
observables linear in the algebra elements. In the following section the classical limit is treated
more explicitly.

5. Symmetric representations

As already mentioned, in the symmetric representations, for which λ1 = λ and λ2 = 0, we
have to impose the restriction z2 = 0. The norm of the coherent states greatly simplifies in
this case and reduces to

〈z|z〉 = (1 + |z1|2 + |z3|2 + |z4|2)λ. (74)

This simplicity will allow us to explore many properties of the coherent states explicitly.
Using the Bargmann-like representation we derive the appropriate measure and the related
resolution of unity. We also introduce canonical coordinates that bring the Poisson bracket
and the symplectic 2-form to real diagonal form.

5.1. Resolution of unity

In the symmetric representations H1,H2 and J2 are enough to identify all vectors. We can
use their differential representation to obtain the following partial differential equations for
Fn(z) (note that in the symmetric representations the variable z2 vanishes identically and that
σ2 = λ − σ1):

[z1∂1 + z3∂3 + 2z4∂4 − λ]Fn(z) = h1Fn(z) (75)

[−z1∂1 + z3∂3]Fn(z) = h2Fn(z) (76)

[(z1∂1)
2 + (z3∂3)

2 + 2(z3∂1)(z1∂3) + 2z3∂3]Fn(z) = σ2(σ2 + 2)Fn(z). (77)

The solution is simple:

Fn(z) = cz
(σ2−h2)/2
1 z

(σ2+h2)/2
3 z

(σ1+h1)/2
4 (78)

where c is a constant, whose value is fixed by normalization. One can show that it involves
only binomials:

c2 =
(

λ

σ1

) (
σ2

(σ2 + h2)/2

) (
σ1

(σ1 + h1)/2

)
. (79)

From this explicit form of the functions Fn(z) we are able to determine the overlap of two
coherent states as

〈z|z′〉 = (1 + z∗
1z

′
1 + z∗

3z
′
3 + z∗

4z
′
4)

λ (80)
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and to infer the measure:

dµ(z) = (λ + 1)(λ + 2)(λ + 3)

π3

d2z1 d2z3 d2z4

(1 + |z1|2 + |z3|2 + |z4|2)5
. (81)

Note that (λ+ 1)(λ+ 2)(λ+ 3) is the dimension of the representation. This is the Haar measure
on USp(4)/U(2) and is very similar to previous results on Lie groups [9, 25]. Both the
orthogonality relations (42) and the reproducing kernel property (43) can therefore be verifyed
explicitly in the symmetric representations.

5.2. Poisson bracket and canonical coordinates

In the case of symmetric representations we obtain (λ ≡ λ1)

ωij = λ

f

(
δij − zj z

∗
i

f

)
(82)

(δij is the delta of Kronecker) with i, j = 1, 3, 4, and the inverse matrix is given by

ωij = f

λ
(δij + zj z

∗
i ). (83)

This matrix can be used to define the Poisson bracket

{f, g} = 1

ih̄

∑
i,j=1,3,4

ωij

{
∂f

∂zi

∂g

∂z∗
j

− ∂f

∂z∗
j

∂g

∂zi

}
. (84)

We can now bring this expression to a diagonal form, customary in classical mechanics,

{f, g} =
3∑

i=1

{
∂f

∂qi

∂g

∂pi

− ∂f

∂pi

∂g

∂qi

}
(85)

by defining the canonical coordinates
q1 + ip1√

2�
= z1√

1 + |z1|2 + |z3|2 + |z4|2
(86)

and
qj + ipj√

2�
= zj+1√

1 + |z1|2 + |z3|2 + |z4|2
j = 2, 3 (87)

where we have used the variable � := h̄λ, which is adequate for treating the classical limit.
The symplectic 2-form in these new coordinates is written simply

ω =
3∑

i=1

dqi ∧ dpi. (88)

The results expressed in equations (85) and (88) allow us to call the (qi, pi) pairs canonical
coordinates. Note that they have the constraint

E(q, p) =
3∑

i=1

q2
i + p2

i � 2� (89)

which expresses the compactness of the group USp(4) and of its associated quotient spaces.
In these coordinates, the expectation values of the algebra elements with respect to

normalized coherent states can be obtained:

E+
1 = 〈z‖h̄E+

1 ‖z〉 = F

2
(q1 − ip1) +

1

2
(q2 + ip2)(q3 − ip3) (90)

E+
2 = 〈z‖h̄E+

2 ‖z〉 = 1√
2
(−q2 + ip2)(q1 + ip1) (91)
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E+
3 = 〈z‖h̄E+

3 ‖z〉 = F

2
(q2 − ip2) − 1

2
(q1 + ip1)(q3 − ip3) (92)

E+
4 = 〈z‖h̄E+

4 ‖z〉 = F√
2
(q3 − ip3) (93)

H1 = 〈z‖h̄H1‖z〉 = 1

2

(
q2

3 + p2
3 − F 2

)
(94)

H2 = 〈z‖h̄H2‖z〉 = 1

2

(
q2

2 + p2
2 − q2

1 − p2
1

)
(95)

where F = √
2� − E. The expected values for the negative roots are obtained simply by

complex conjugation. It is easy to see that the classical functions have Poisson brackets
(as given by (85)) compatible with the usp(4) commutation relations and (69).

The classical limit is now implemented by letting h̄ → 0, λ → ∞, while keeping the
product h̄λ constant. As classical observables we take the above expectation values of the
algebra elements in the coherent states. Note that the Planck constant is present on the left-
hand side (the ‘quantum’ side) of (90)–(96) in order to provide a dimensional meaning, while
the right-hand side (the ‘classical’ side) is independent of it.

6. Coherent states and coadjoint orbits

The relation between coherent states and coadjoint orbits of Lie groups has been long known,
and the literature on the subject (and its connection with the theory of geometric quantization)
is vast. We provide here only a brief description of the theory and outline some of the main
results, not going into many details. Recent accounts and many references can be found in
[9, 26–28].

Let G be a Lie group with a (left) action on a smooth manifold X. Let this action be
denoted gx (where g ∈ G and x ∈ X) and assumed to be continuous in both variables. If
this G-action is transitive, which means that given x, y ∈ X there is always g ∈ G such that
x = gy, then X is said to be a homogeneous space. All such spaces are diffeomorphic to
quotient spaces G/H , where H is a closed subgroup of G (elements of G/H are of the form
gH , and G has a natural action on this space given by gH �→ g′gH ).

In order to see this, take a fixed point x0 ∈ X and let H0 be its stability group, given by
H0 = {h ∈ G|hx0 = x0}. Since X is homogeneous, for any x ∈ X there is g ∈ G for which
x = gx0. The identification x �→ gH0 is then a diffeomorphism between X and G/H0. In
fact, given a general space X, the orbit of x ∈ X under G is the set Gx = {y ∈ X|g ∈ G} and
thus X consists of a collection of disjoint G-orbits, each of them being a homogeneous space.

On the other hand, G has a natural action, the adjoint action, on its algebra g, in which
A �→ g(A) = gAg−1 for any A ∈ g (since we are only concerned with matrix groups, the
product gA can be regarded simply as a matrix multiplication). This induces an action of G on
g∗, the dual of g, in which a point ρ ∈ g∗ is mapped, under the action of a group element g, to
the point ρg . This is called the coadjoint action, and ρg is defined by ρg(A) = ρ(g(A)),A ∈ g.

The setOρ = {ρg|g ∈ G} is called the coadjoint orbit of ρ under G. This is a homogeneous
space and therefore diffeomorphic to the quotient G/Hρ , where Hρ = {g ∈ G|ρg = ρ} is the
stability group of ρ. It is clear that, given a fixed ρ, its coadjoint orbit can be used to define a
representation Rρ of the algebra g as functions on G/Hρ , in which

Rρ(A)(x) = ρx(A) A ∈ g x ∈ G/Hρ. (96)
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This representation is naturally endowed with a Poisson bracket {·, ·} induced by the algebra
Lie product [·, ·] according to {Rρ(A),Rρ(B)}(x) = ρx([A,B]). In local coordinates such
Poisson bracket is given as in (67).

We have thus seen that quotient spaces G/H can be regarded as phase spaces, and that
the Lie algebra g corresponding to G can be represented by functions on this space. Let us
now make the connection with coherent states. Let H be a Hilbert space that carries a unitary
irreducible representation of g, denoted T. To any vector |0〉 ∈ H there corresponds an element
ρ ∈ g∗ whose action on g is given by ρ(A) = 〈0|T (A)|0〉, A ∈ g. Therefore, there is a natural
identification between the coadjoint orbit ρg and the set of vectors |g〉 = T (g)|0〉, in which
ρg(A) = 〈g|T (A)|g〉 = 〈0|T (g(A))|0〉.

The set of coherent states |g〉, g ∈ G, is therefore topologically equivalent to the quotient
G/H , where H is the isotropy group of the fiducial vector |0〉. This vector is usually taken to
be of highest (or lowest) weight (coherent states built up from a general weight share most of
the properties of the usual ones [1, 3]). In the case of usp(4), we have to distinguish between
non-symmetric and symmetric representations. In the first case, the isotropy group of the
lowest state is isomorphic to U(1) × U(1) and therefore the coherent states are labelled by
points in USp(4)/[U(1) × U(1)]. In the symmetric representations the coherent states were
again taken to be the orbit of the lowest weight, which in this case was diffeomorphic to
USp(4)/U(2).

The quotient of USp(4) by its maximal subgroup SU(2) × SU(2) was not found in this
context. The reason for this absence is the fact that SU(2) × SU(2) does not arise as isotropy
subgroup of lowest weights. The only vectors that have this group as an isotropy are of the
kind |0, 0, 0, 0〉, which can only be found in antisymmetric representations (λ1 = λ2), because
of inequalities (20). This case is analysed in the next section.

6.1. The maximal subgroup SU(2) × SU(2)

The algebra of the first subgroup SU(2) consists in
{
H1, E

+
4 , E−

4

}
. The other subgroup SU(2)

is generated by
{
H2, E

+
2 , E−

2

}
. Therefore, the remaining elements of the usp(4) algebra

generate the coset:

USp(4)/[SU(2) × SU(2)] = M(η) = exp
{
η1E

+
1 + η2E

+
3 − η∗

1E
−
1 − η∗

2E
−
3

}
. (97)

In the fundamental 4 × 4 representation we have

η1E
+
1 + η2E

+
3 − η∗

1E
−
1 − η∗

2E
−
3 =

(
0 B

−B† 0

)
(98)

where B is a 2 × 2 matrix given by

B =
(−η1 −η∗

2

η2 −η∗
1

)
. (99)

The exponential can easily be done, and we obtain

M(η) =
(

1 cos|η| W

−W † 1 cos|η|
)

(100)

where 1 is the 2 × 2 identity matrix, |η|2 = |η1|2 + |η1|2 and W is given by

W = sin|η|
|η| B. (101)

Note that 1 cos|η| = √
1 − W †W = √

1 − WW †. Variables W are called projective
coordinates of the coset representative, and the action of the group upon this space becomes a
holomorphic transformation [25].
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Coherent states |η〉 are the orbit of a fiducial state |0〉 under the action of the quotient space
G/H, |η〉 = M(η) |0〉. In order to construct coherent states that are parametrized by points in
USp(4)/[SU(2) × SU(2)], we need to find a fiducial state |0〉 that has SU(2) × SU(2) as its
isotropy group. States with that property appear only in antisymmetric representations, and
in Gelfand–Tsetlin notation they are given by |0, 0, 0, 0〉. This state, which is not a maximum
weight, is annihilated not only by all long roots

{
E±

2 , E±
4

}
, but also by the diagonal operators

H1 and H2,

H1|0〉 = H2|0〉 = 0. (102)

This has an important consequence. The average value of any algebra element A in the
coherent state |η〉 (not the same as the previous |z〉) is

〈η|A|η〉 = 〈0|M−1(η)AM(η)|0〉 (103)

where we have used the fact that the representations are unitary. Since M−1AM is also an
element of the usp(4) algebra, it can be written as a general linear combination of all roots.
But the average value of a non-zero root in a basis state is always zero. Therefore, it is clear
from (102) that the average value of any element of usp(4) will vanish in the coherent state:

〈η|A|η〉 = 0 ∀A ∈ usp(4) ∀η ∈ C. (104)

We see that the coherent states provide only a trivial representation of the group in this case,
in which every element is represented by the identity operation.

Let us examine the details of a particular exemple. The simplest case of antisymmetric
representation is λ1 = λ2 = 1, a representation of dimension 5. In that case we have

η1E
+
1 + η2E

+
3 − η∗

1E
−
1 − η∗

2E
−
3 =

(
0 B

−B† 0

)
(105)

where B is now given by a line,

B =
√

2(η2 η1 −η∗
1 η∗

2). (106)

The exponential can be shown to be

M(η) = exp

(
0 B

−B† 0

)
=

(
cos 2|η| W

−W † √
1 − W †W

)
(107)

where now

W = χ(η)B (108)

and χ(η) = sin(2|η|)/(√2|η|).
The coherent state |η〉 is then simply

|η〉 = M(η)|0〉 = (cos 2|η| −η∗
2χ(η) −η∗

1χ(η) η1χ(η) −η2χ(η))T . (109)

Relation (101) provides the projective coordinates, which are given by

wi = ηi sin|η|
|η| i = 1, 2. (110)

In these coordinates, the coherent state, now denoted |w〉, is written

|w〉 = (1 − 2|w|2 −w∗
2k(w) −w∗

1k(w) w1k(w) −w2k(w))T (111)

where |w|2 = |w1|2 + |w1|2 and k(w) =
√

2 − 2|w|2. It is easy to see that these states are
normalized, 〈w|w〉 = 1. It is also easy to see (using again the matrix representations) that
indeed 〈w|A|w〉 = 0 for any element A of the Lie algebra.
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The vanishing of the average values of the generators does not imply a trivial dynamics,
since a general element in the enveloping algebra will not vanish. The Casimir operators of
the su(2) subalgebras, for example, are

J1 = H 2
1 +

[
E+

4 , E−
4

]
+ J2 = H 2

2 +
[
E+

2 , E−
2

]
+ (112)

and their average values are simply given by

J1 = J2 = |w|2(1 − |w|2) (113)

where Ji = 〈w|Ji |w〉. The agreement between the values of J1 and J2 is particular of this
representation, and will not happen in general.

7. Conclusions

We have explicitly obtained coherent states for the unitary symplectic group USp(4),
in an arbitrary irreducible representation. We have derived their normalization and the
correspondent symplectic structure, which together with the expectation values of the algebra
elements provides a classical limit for quantum systems with symplectic symmetry. In the case
of symmetric representations we obtained an explicit resolution of unity and also canonical
coordinates that bring the Poisson bracket to its standard form.

We have not tackled the problem of the diagonal representation of operators (sometimes
called upper symbols or P-functions). Such representation is less trivial than the one using
expectation values (sometimes called lower symbols or Q-functions), because upper symbols
may fail to exist and (when they exist) are not unique in general. Interesting observations in
this respect appear in [1] and a recent detailed analysis can be found in [29]. We just want to
mention that the coherent states associated with the quotient USp(4)/[SU(2) × SU(2)] were
seen to provide only the trivial representation of the group, because all the lower symbols
vanished. How this is related to the existence and unicity of the diagonal representation must
be investigated (we note that the states defined in section 6.1 belong to case A defined in [29],
while the ones defined in (38) belong to their case B).

An interesting application of coherent states is the investigation of the classical limit
of non-integrable quantum systems [23]. A Hamiltonian consisting of an integrable term
plus a non-integrable perturbation, H = H0 + εV , may display different types of dynamics
depending on the value of ε. Using the formalism described here one could, in principle,
follow the transition from integrability to chaos in both the quantum and the classical levels.
We will explore these matters in a subsequent work.
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[23] Gnutzmann S, Haake F and Kuś M 2000 J. Phys. A: Math. Gen. 33 143
[24] Bargmann V 1961 Comm. Pure Appl. Math. 14 187
[25] Gilmore R 1994 Lie Groups, Lie Algebras and Some of their Applications (Malabar: Krieger)
[26] Guillemin V and Sternberg S 1984 Symplectic Techniques in Physics (Cambridge: Cambridge University Press)
[27] Lisiecki W 1995 Rep. Math. Phys. 35 327
[28] Bartlett S D, Rowe D J and Repka J 2002 J. Phys. A: Math. Gen. 35 5599
[29] Mukunda N et al 2003 J. Math. Phys. 44 2479


